Insect larvae that live in temporary ponds must cope with a rapidly diminishing resource. We tested the hypothesis that floodwater mosquitoes would react to diminishing water levels by accelerating larval development time and emerging as smaller adults. Since a reduction in habitat size leads to increased larval densities, we also included two larval densities. Newly-hatched floodwater mosquito larvae, Aedes vexans (87.9% of emerged adults) and Ochlerotatus sticticus (12.0% of emerged adults), were taken from the field and randomly assigned to one of three water level schedules. Survival to adult emergence was significantly affected by the water level schedule. Ae. vexans adults emerged later in the decreasing schedule than the constant water schedule, but time to emergence was not affected by larval density. In the drying water schedule, Ae. vexans adults emerged 6 to 14 days after complete water removal. Adult size was significantly affected by both water level schedule and larval density. Adults of Oc. sticticus emerged earlier in the decreasing than the constant water schedule which was in accordance with our hypothesis, but size was not affected. Our results indicate two different responses of two floodwater mosquito species to diminishing larval habitat. Oc. sticticus accelerated larval development while Ae. vexans larvae showed remarkable survival in humid soil. Both species are often numerous in inundation areas of large rivers, and climatic conditions after a flood might influence which species dominates the adult mosquito fauna.